Dynamic Folding Pathway Models of the Trp-Cage Protein

نویسندگان

  • In-Ho Lee
  • Seung-Yeon Kim
چکیده

Using action-derived molecular dynamics (ADMD), we study the dynamic folding pathway models of the Trp-cage protein by providing its sequential conformational changes from its initial disordered structure to the final native structure at atomic details. We find that the numbers of native contacts and native hydrogen bonds are highly correlated, implying that the native structure of Trp-cage is achieved through the concurrent formations of native contacts and native hydrogen bonds. In early stage, an unfolded state appears with partially formed native contacts (~40%) and native hydrogen bonds (~30%). Afterward, the folding is initiated by the contact of the side chain of Tyr3 with that of Trp6, together with the formation of the N-terminal α -helix. Then, the C-terminal polyproline structure docks onto the Trp6 and Tyr3 rings, resulting in the formations of the hydrophobic core of Trp-cage and its near-native state. Finally, the slow adjustment processes of the near-native states into the native structure are dominant in later stage. The ADMD results are in agreement with those of the experimental folding studies on Trp-cage and consistent with most of other computational studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogeny of protein-folding trajectories reveals a unique pathway to native structure.

To scrutinize how a protein folds at atomic resolution, we performed 200 molecular dynamics simulations (each of 50 ns) of the miniprotein Trp-cage on the computational grid. Within the trajectories, 58 folding and 31 unfolding events were identified and subjected to extensive comparison and classification. Based on an analogy with biological sequences, the folding and unfolding trajectories (a...

متن کامل

Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model.

We develop a coarse-grained protein model with a simplified amino acid interaction potential. Using this model, we perform discrete molecular dynamics folding simulations of a small 20-residue protein--Trp-cage--from a fully extended conformation. We demonstrate the ability of the Trp-cage model to consistently reach conformations within 2-angstroms backbone root-mean-square distance from the c...

متن کامل

Folding Trp-cage to NMR resolution native structure using a coarse-grained model

We develop a coarse-grained protein model with a simplified amino acid interaction potential. We perform discrete molecular dynamics folding simulations of a small 20 residue protein – Trp-cage – from a fully extended conformation. We demonstrate the ability of the Trp-cage model to consistently reach conformations within 2Å backbone root-mean-square distance (RMSD) from the corresponding NMR s...

متن کامل

Role of Tryptophan Side Chain Dynamics on the Trp-Cage Mini-Protein Folding Studied by Molecular Dynamics Simulations

The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully ext...

متن کامل

Folding of Trp-cage Mini Protein Using Temperature and Biasing Potential Replica—Exchange Molecular Dynamics Simulations

The folding process of the 20 residue Trp-cage mini-protein was investigated using standard temperature replica exchange molecular dynamics (T-RexMD) simulation and a biasing potential RexMD (BP-RexMD) method. In contrast to several conventional molecular dynamics simulations, both RexMD methods sampled conformations close to the native structure after 10-20 ns simulation time as the dominant c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013